Фильтр для электросети своими руками

Фильтр для электросети своими руками

Сетевые фильтры — как они работают, примеры схем

Что такое сетевой фильтр? — это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра — пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20. 40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) — вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, СЗ, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства — на номинальный ток 16 А.

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4. 6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 — “евро”, рис.8).

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Рис. 9. Фильтр-удлинитель.

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6. 10 мм).

Читать еще:  Крепление пластиковых панелей на стену без обрешетки

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 — промышленные высокочастотные, типа ДМ-1 индуктивностью 50. 100 мкГн. Конденсаторы — пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ — не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках — рис.13).

Рис. 12Сборка фильтра.

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки — около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 — 120 мкГн.

Конденсаторы первого звена фильтра — слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1. R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 — типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

Крабовые Ручки Almois Jobbing Official

Журнал о технических устройствах и технологиях. Ковыряние в бытовой технике, электронике: что внутри, как это работает, опыт эксплуатации. Выбор лучшего товара — отзывы, достоинства и недостатки. Покупка, исследование и опыт использования инструментов, изготовление приспособлений. Оборудование мастерской. Ремонт, сделай сам, своими руками, поделки, самоделки. Справочники, полезные советы, лайфхаки.

Схема и детали сетевого фильтра из ЭЛТ-монитора

Однажды хочется/нужно сделать сетевой фильтр для защиты какого-нибудь маломощного самодельного электронного устройства от помех в электросети. Также верно и обратное: такой фильтр защищает электросеть (и все подключённые к ней другие приборы) от помех-шума, создаваемого импульсным блоком питания (или мотором) данного прибора.

И тут вспоминаешь, что таких фильтров было уже миллион выброшено на помойку, т. к. они были во всех ЭЛТ-мониторах и телевизорах (90-х и начала 2000-х), видео- и аудио-магнитофонах, хороших компьютерных блоках питания и т. п. Так что его можно вытащить из чего-нибудь ещё случайным образом не выброшенного, или же собрать обратно из ранее вытащенных деталек… вот только схема нужна. А также фотографии-описание используемых деталей, т. к. они все тут специфические: конденсаторы должны быть специализированными шумоподавляющими, катушки-дроссели имеют встречную намотку и т. п.

Сетевой фильтр питания из ЭЛТ монитора LG

Итак, вот сетевой фильтр + выпрямитель из монитора LG 14″ 520Si 1999 г. Сверху на картинке [можно увеличить в 2 раза] детали расположены в таком порядке, как они были распаяны на плате. Далее воссозданная схема. Далее фотки деталек и надписей на них крупным планом. Далее, под картинкой, текстовое описание всех деталей. Сетевой фильтр тут, по существу, до резистора R2 и диодного моста, но дальше ещё есть конденсаторы C5 и C7, которые тоже зачем-то нужны.

Описание деталей

  1. R1. Резистор 470 кОм, 0.5 Вт.
  2. F1. Предохранитель T3.15A250V. На 3.15 ампер, 250 вольт.
  3. C1, C2. Конденсаторы MKP 220n 275V

X2. MKP — металлизированный полипропиленовый, 220 нФ, 275V

— предназначен для работы в сети переменного тока с напряжением 275 вольт, X2 — шумоподавляющий, класса безопасности X2 [подробнее, что означают эти X1-X2-Y1-Y2 и другие значки на корпусе конденсатора; на английском].

  • T1. Как бы трансформатор в жёлтом, 6200TLE001B, — дроссель: встречная намотка 2-х одинаковых обмоток на едином сердечнике, индуктивность каждой — 20.0 мГн, диаметр провода — 0.45 мм.
  • C3, C4, C7. Конденсаторы 222M X1Y2 250V

    : 2.2 нФ (2200 пикофарад), предназначен для работы в сети переменного тока с напряжением 250 вольт, X1Y2 — шумоподавляющий, «безопасный», подробнее тут: KEMET Safety Disc Capasitors.

  • L1. Отрезок проволоки в ферритовой цилиндрической бусине.
  • T2. Тороидальная катушка индуктивности, 509DNYa1G, — тоже дроссель: встречная намотка 2-х одинаковых обмоток (каждая на своей половине ферритового кольца), индуктивность каждой — 2.4 мГн, диаметр провода — 0.35 мм.
  • R2. Резистор 4R7 5W — 4.7 Ом, 5 Вт.
  • VDS1. D2SBA60 — диодный мост из 4-х диодов на 600V 1.5A каждый.
  • C5. Конденсатор 472M X1Y2 250V

    : 4.7 нФ.

  • R3. Резистор 560 кОм, 0.25 Вт.
  • C6. Конденсатор электролитический 220 мкФ, 400 вольт.
  • P. S. Чаще сетевые фильтры (в мониторах, компьютерных БП и др.) устроены проще: Простой сетевой фильтр, возможно своими руками.

    Сетевой фильтр с индикацией подключения фазы

    Опубликовано: 27 декабря, 2013 • Рубрика: Блоки питания

    Автор: главный редактор «РадиоГазеты».

    Идея написать небольшую статью родилась у меня после прочтения январского номера за 2014 год журнала «AV-салон». В нём есть публикация о шведской фирме PRIMARE. Её продукция(в основном аудио-направленности: усилители, ресиверы, CD-проигрыватели и т.п.) отличается продуманным дизайном, высоким качеством и, разумеется, ценой.

    Я не пользовался продукцией этой фирмы, поэтому ничего плохого о ней сказать не могу.

    Немного удивил один момент. Позволю небольшую цитату из столь авторитетного издания:

    «Внимание к мелочам — конёк Primare. Много ли производителей техники уделяют внимание такому вопросу, как правильное включение сетевых вилок? При подключении силового кабеля к усилителям рекомендуется ориентироваться на метку, которой обозначен фазовый контакт. В этом случае, говорится в описании, уменьшается вероятность возникновения помех и фона. от себя могу добавить, что фазировка влияет на звуковое разрешение, и на построение звуковой сцены.»

    И приводится фотография (извиняюсь за качество):

    Ну, то что правильная фазировка сетевой вилки действительно важна, спорить, наверное, никто не будет? Но зачем создавать пользователям столько неудобств? Сомневаюсь, что у каждого аудиофила есть под рукой пробник-индикатор, чтобы проверить, где в розетке фаза. Можно, конечно, и методом прослушивания определить наиболее оптимальное подключение. Но на дворе 21 век и существенно упростить пользователям жизнь большого труда не составляет.

    Предлагаю вам, уважаемые читатели, снабдить ваши усилители, ЦАПы и другие устройства простым блоком, который расширит сервисные функции и существенно облегчит правильную фазировку аппаратов. Схема совмещает в себе фильтр от ВЧ-помех и индикатор подключения фазы. Наверное, не стоит объяснять о необходимости фильтрации сетевого напряжения от ВЧ-помех, когда практически любой аппарат включаемый в розетку имеет блок питания с высокочастотным преобразователем, начиная от телевизоров и мониторов и кончая тривиальной зарядкой для мобильника.

    Напомню, что современные фильтры проектируются с расчётом на подавление двух составляющих помех: синфазной и дифференциальной составляющей. Синфазное напряжение помехи измеряется относительно корпуса устройства с каждым из полюсов шин питания. Дифференциальная составляющая измеряется между полюсами шин питания (фазой и нейтралью) или как разность синфазных составляющих помехи между шинами питания.

    Читать еще:  Крепление на гипсокартонную стену тяжелых предметов

    Кроме подавления помех входной фильтр выполняет также защитную функцию в аварийных режимах эксплуатации: защита по току и защита от перенапряжения. Для этого в них устанавливают предохранители и варисторы (последние сейчас как-то редко стали встречаться).

    Обязательным условием эффективной работы фильтра является наличие на его входе и выходе конденсаторов. Тем самым обеспечивается ёмкостной характер входного и выходного сопротивления, что способствует ослаблению влияния подводящих линий или нагрузки на уровень действующих помех.

    Схема фильтра заимствована из компьютерного блока питания. Причём чаще всего встречаются простые фильтры:

    Такие же фильтры, только выполненные на менее мощных деталях, используются и в маломощных устройствах: мониторах, DVD-плеерах, зарядных устройствах и т.п. Такой фильтр подавляет как синфазные так и дифференциальные составляющие помехи. Резистор R1 нужен для разряда конденсаторов фильтра при отключении от сети, во избежание поражения электрическим током.

    В своих конструкциях вы можете использовать детали от неисправных компьютерных блоков питания. На фото эти детали обведены красным цветом:

    Для маломощных устройств (предварительные усилители, эквалайзеры, ЦАПы и т.п.) можно использовать детали от неисправных блоков питания мониторов:

    или от неисправного DVD-плеера или других маломощных устройств:

    В некоторых китайских поделках из экономии фильтрующие конденсаторы не устанавливают, а помехоподавляющие дросселя заменяют перемычками:

    Понятно, что для нас от таких устройств нет никакой пользы.

    В фирменных, качественных блоках питания иногда применяют более сложные фильтры для повышения качества подавления дифференциальной составляющей помехи:

    Конструктивно такой фильтр легко определить по двум фильтрующим дросселям:

    Обращаю внимание, что очень часто входные элементы фильтра, такие как конденсатор С1 и резистор R1, а также дополнительные конденсаторы С2 и С3, устанавливаются не на общей печатной плате, а монтируются непосредственно на выводах сетевого разъёма и предохранителе.

    Выглядит это примерно так:

    Эти детали, смонтированные навесом, лучше тоже перенести в свою конструкцию.

    Теперь добавим в сетевой фильтр индикацию подключения фазы. На примере простого фильтра:

    Увеличение по клику

    HL1 — это двухцветный светодиод (трёхвыводной) с общим общим катодом. Можно использовать например L-53SRSGW или аналогичные.

    Сетевой фильтр и качество напряжения бытовой электропроводки

    Домашняя электрическая сеть таит в себе много сюрпризов, о которых подчас даже не подозревает неискушённый пользователь без соответствующего образования. Знание их позволит улучшить качество работы электроники и сбережет не только материальные затраты на приобретение нового оборудования, но и время с нервными клетками, потраченные на устранение неожиданных поломок.

    Наши советы объясняют домашнему мастеру принципы обеспечения нормального электропитания для бытовых электронных приборов через сетевые фильтры и защиты с поясняющими картинками, схемами и видеороликом.

    Что делает сетевой фильтр

    Качество напряжения в домашней проводке

    Даже основной документ электриков — ПУЭ допускает отклонение этой величины по амплитуде до ±10% от номинала, то есть от 198 и до 242 вольт, что считается нормой. В реальной же жизни напряжение может колебаться в значительно больших пределах. Причем, обещанную нормативами идеальную гармонику синусоиды очень часто нарушают различные высокочастотные помехи.

    Они появляются от проникновения в сеть в/ч сигналов помех из различных источников в результате коммутаций множества аппаратов в схеме питания, возникновения апериодических составляющих, разрядов перенапряжений на высоковольтной стороне трансформаторной подстанции и по многим другим причинам.

    Синусоида искаженной формы от высокочастотной помехи не влияет на работу резистивных нагрузок с тэнами, лампами накаливания. Она в большинстве случаев допустима для обеспечения вращения простых электродвигателей, но вредна при эксплуатации компьютеров, телевизоров, устройств сложной электроники. Им нужна надежная защита от помех питания.

    Назначение фильтров

    Появление подобных в/ч помех невозможно предвидеть, а потребителям остается только устранять их автоматическими устройствами. Полностью исправить форму искаженной синусоиды может только специальный стабилизатор напряжения.

    Сетевой фильтр не обладает такими возможностями. Он создается с задачей — пропустить через себя искаженную высокочастотной помехой гармонику так, чтобы на выходе максимально отсеять высокочастотные помехи и сгладить ее форму до приемлемого состояния. Причем амплитуду напряжения он регулировать не может.

    Эту его особенность необходимо хорошо представлять перед тем, как пойти в магазин чтобы купить фильтр сетевой для своего компьютера и подключить по следующей схеме.

    Сетевой компьютер для выполнения ответственной работы подключают со схемой резервирования питания.

    На картинке видно, что обычно сетевой фильтр используется в качестве первого каскада сглаживания пульсаций при передаче электроэнергии от розетки к источнику бесперебойного питания и неответственному периферийному оборудованию, например, принтеру. Качественное напряжение на системный блок и монитор компьютера обеспечивает ИБП.

    Эту особенность важно представлять и в том случае, когда вы создаёте проводные и беспроводные сети для своей квартиры.

    Принцип работы

    По своей функциональности сетевые фильтры подразделяются на:

    1. простые приборы с защитой от кратковременных перенапряжений и сверхтоков;
    2. электронные индуктивно-емкостные схемы;
    3. комбинированные устройства.

    Простые фильтры

    К ним относят варисторные изделия, которые в своем составе имеют:

    1. варистор, отекающий кратковременный пик перенапряжения;
    2. биметаллический контакт или предохранитель, работающий в качестве максимальной токовой защиты.

    Фильтры с варисторами

    Они могут изготавливаться отдельным полупроводником или сборкой из них.

    Единичный модуль

    Один варистор используется в самых простых защитах.

    При номинальном электроснабжении сети он обладает большим электрическим сопротивлением и ток через себя не пропускает. Если же напряжение возрастает до критической величины порядка 470 вольт, то полупроводниковый переход варистора пробивается и устраняет перенапряжение замыканием потенциалов сквозь свой внутренний переход, что сопровождается выделением тепловой энергии.

    Сборка варисторов

    Классическая схема собирается на основе треугольника с заземлением средней точки. Варисторы фильтра защищают нагрузку от симметричных и асимметричных перенапряжений в сети.

    Заземление повышает эффективность работы схемы, отводит помехи по дополнительному проводу, подключенному к контуру земли.

    Дешёвые сетевые фильтры с отдельной варисторной сборкой, широко используются в быту. Они фильтрацией сигналов помехи высокочастотного напряжения не занимаются, а могут ограничивать только импульс перенапряжения.

    Защита от сверхтоков

    Высокое напряжение, проскочившее через варисторы при отказе их работы или по другим причинам, создает повышенные токи нагрузок на подключенном оборудовании. Для их ограничения на сетевой фильтр устанавливают токовые защиты:

    1. предохранитель;
    2. или автоматический отсекатель токов многоразового использования.

    Второй вариант предпочтительнее: для ввода в работу после срабатывании защиты достаточно нажать на соответствующую кнопку. Это удобнее, чем вскрывать корпус и менять предохранитель, который еще надо предварительно найти.

    Электронные LC схемы

    Принцип работы защиты

    Электрическое сопротивление резистивных элементов не изменяется от рода тока, который протекает сквозь них. Совсем иная картина складывается у реактивных элементов:

    Их сопротивление находится в прямой зависимости от частоты сигнала.

    Сетевой фильтр с индуктивностью резко увеличивает сопротивление для прохождения токов высокой частоты. Для этого достаточно последовательно к нагрузке разместить в каждом проводе фазы и нуля по одной катушке с индуктивностью порядка 60÷200 мкГн.

    Помехи низких частот можно гасить резистивным сопротивлением до 1 Ома, но лучше использовать конденсатор, подключенный параллельно к нагрузке с номиналом в пределах 0,22÷1,0 мкф, создавая минимум двойной запас для его работы по напряжению.

    На основе этого принципа создаются различные схемы фильтров снижения высокочастотных помех.

    У LC фильтров одновременно работают два закона коммутации:

    1. индуктивность гасит резкие повышения тока;
    2. конденсатор подавляет высокочастотные броски напряжения.

    Комбинированные устройства

    Элитные сетевые фильтры сочетают в себе принципы работы обеих схем защиты:

    1. варисторных сборок, устраняющих импульсы перенапряжений;
    2. и LC контуров, гасящих высокочастотный сигнал помехи.

    Управление их работой облегчает функция Master Control, осуществляемая микропроцессорным устройством.

    По такой схеме работает известный сетевой фильтр Pilot.

    Минимальную фильтрацию высокочастотной сигналов напряжения обеспечивает сетевой фильтр с тремя составными частями: варистор с напряжением 470 вольт, два дросселя на 60÷200 мкГн, конденсатор 0,22÷1,0 мкф.

    Конструктивные особенности

    Сетевые фильтры выпускаются различными формами, конфигурацией, характеристиками. На упаковке пишут, что их задача — подключение и защита подсоединенных потребителей.

    Поскольку функции защиты кратко уже рассмотрены, то остановимся на способах подключения.

    Вход питания

    Любой сетевой фильтр оборудован кабелем различной длины и евровилкой с тремя контактами.

    Обратите особое внимание на подключение РЕ-проводника к контуру заземления и розетке, применяемое в системе электроснабжения квартиры по схемам TN-S и TN-C-S. Его наличие повышает свойства защиты и качество фильтрации высокочастотной сигналов при рабочем режиме и отводит токи утечек из-за пробоя изоляции при авариях.

    Читать еще:  Колясочная в подъезде нормы

    Подключение потребителей

    Конструктивное отличие многих моделей заключается в количестве и расположении розеток. Оптимальным вариантом стало их размещение в одну или две линии с разворотом относительно продольной оси на 45 градусов.

    Такая схема является компромиссом между габаритами прибора и удобствами пользования им.

    Как выбрать и купить фильтр

    Помочь определиться с выбором типа прибора непосредственно в магазине должна вся перечисленная выше информация.


    Однако обратите внимание еще на два вопроса:

    1. суммарную мощность потребления подключённой нагрузки;
    2. наличие розеток в корпусе, которые не обеспечивают фильтрацию напряжения, а работают как простой удлинитель (встречается и такой прибор).


    У приведенного на фото прибора максимально допустимая нагрузка промаркирована на тыльной стороне корпуса и ограничивается 10 амперами. Советуем для нормальной работы иметь резерв около 30 процентов минимум, то есть нагружать эту модель не более 7 ампер.

    Этого вполне достаточно для сложной бытовой техники с электроникой. Ведь питать электрические котлы, теплонагреватели, лампы накаливания и электродвигатели через сетевой фильтр нет необходимости. Они нормально работают от напряжения с высокочастотными помехами.

    Рекомендуем дополнительно посмотреть видеоролик владельца CompsMaster “Выбираем сетевой фильтр”.

    Сейчас вам удобно задать вопросы по теме и поделиться этим материалом с друзьями в соц сетях.

    Статьи по темам

    четверг, 25 сентября 2014 г.

    Самодельный сетевой фильтр из доступных деталей.

    На фото современный сетевой блок питания, а на переднем плане секционный дроссель, который служит для защиты сети от помех этого блока. От двух до четырёх секций проводов намотаны таким образом, что наводящие в них высокочастотные поля взаимно компенсируются, замыкаясь на сердечнике дросселя. Такому устройству даже не нужна экранировка, уже сам замкнутый сердечник дросселя является экраном, концентрируя вокруг себя излучающие поля в виде замкнутых окружностей.

    На практике число звеньев фильтров может достигать от 1-го до 3-х. Это 1 – 3 сердечника дросселя. В большей степени это будет зависеть от мощности или тока потребления устройства, по цепи питания которого необходимо поставить фильтр в виде звеньев дросселей с парными намотками. С ростом тока увеличивается сечение провода и меньше витков укладывается в сердечнике, а, следовательно, меньше индуктивность катушки и частота среза будет выше частоты помех.

    Так уменьшить излучение мощного компьютера по сети помог трёхзвенный фильтр, а сами сердечники дросселя были соизмеримы по размерам с дросселями аналогичных компьютерных блоков питания. Покупные сетевые фильтры с розетками явно уступали такой конструкции, зато именно самодельная конструкция сдерживала помехи от компьютера, приручив мышку двигаться по экрану, а телевизор в соседней комнате стал работать без искажений.

    В качестве сердечника можно использовать ферритовое кольцо с проницаемостью 400 – 2000 НМ. Самодельная намотка на кольце требует определённых навыков, при напряжении 220 вольт в случае межвиткового замыкания мало не покажется. Намотку удобно сделать двумя параллельными проводами. Она должна быть однорядной, а витки ни в коем случае не должны перекрещиваться, а между проводами необходимо оставлять небольшой зазор или шаг во избежание короткого замыкания или пробоя. Провод, выбранного диаметра, должен быть марки ПЭВ – 2. Ферритовый сердечник обматывается лакотканью или другим изолирующим материалом. Такой тип сердечников обычно используется в старых блоках питания компьютеров.

    Аналогичным фильтром можно существенно оживить ДВ, СВ и КВ диапазоны старого приемника ретро, работающего с трансформаторным блоком питания. Уровень шума и урчания в этих диапазонах заметно ослабнут. В тоже время пока комфортное звучание на этих диапазонах возможно только на природе, вдали от сетевых проводов, зато с помощью батарейного приёмника, имеющего магнитную встроенную антенну, можно отыскать проводку в стене по характерному урчанию, если включена энергосберегающая лампа и сложные профессиональные приборы уже не нужны. При необходимости таким лампам тоже не помешал бы дополнительный сетевой фильтр.

    Перед сдачей таких ламп в утиль необходимо экспроприировать из них ферритовый дроссель. Из них можно сделать простой фильтр ФНЧ для другой энергосберегающей или светодиодной лампы.

    43 комментария:

    Она должна быть однорядной, а витки ни в коем случае не должны перекрещиваться.

    допустим ток 1А, потому как по вашей формуле неизвестно.

    Во всём посте единственная формула для определения диаметра провода в миллиметрах, если подставить значение тока нагрузки в амперах под квадратный корень, с учётом фиксированного значения плотности токовой нагрузки 2 А / мм кв. С учётом всех сокращений используется соотношение величин удобное для практического расчёта.

    Непонятно только одно, как рассчитать на каких частотах будет работать конкретный самодельный фильтр, а то ведь можно так всяких дросселей набрать, что начнет давить и 50 Герц в сети или такое невозможно?

    Конкретно рассчитать можно по формуле Томпсона F = 1/(2π√(LC)).
    Расчёт LC фильтров.
    Следует учесть, что c ростом числа звеньев фильтра увеличивается крутизна характеристики фильтра (растёт подавление высших частот), а резонансная частота меняется незначительно.

    сложно, не из чего делать, даешь готовое решение у китайцев?

    а что бы вы посоветовали, нужен фильтр для китайского транзистор тестер Mega328 хочу его запитать от сети от сотового адаптера 5v с DC-DC преобразователем либо найти на 9v адаптер, но это дела нужно отфильтровать говорят прибор глючит от сети и есть большие погрешности

    Тогда лучше адаптер на 9 вольт (трансформатор, диодный мост, стабилизатор напряжения на КРЕНке).

    я нашел у себя старый китайский адаптер ty — 320 еще из нулевых первые у китайцев пошли , он линейный, там есть уже диодный мост и один кондер на 470u 10v был высохший заменил на 470u 25v, я так понимаю без стабилизатора все равно не обойтись?

    взял я к этому китайскому линейному БП линейный регулируемый стабилизатор на LM317 и пытался подключить к тестеру от 9 до 12 выкручивал и без толку прибор так и не запустился, аналогично происходит если и напрямую подцепить

    Прежде чем выкрутить на выходе 9 вольт, необходимо было убедиться, что на входе микросхемы напряжение хотя бы на 1 вольт больше номинального стабилизированного значения. Выпаянный электролитический конденсатор на 10 вольт ставили с 30% запасом по напряжению, что говорит, что блок питание выдавал только около 7 вольт.
    Распространённая ошибка в монтаже подобных стабилизаторов – это отсутствие блокировочных конденсаторов 0,1 мкФ по входу и выходу микросхемы. Во избежание самовозбуждения стабилизатора эти конденсаторы должны распаиваться в непосредственной близости выводов микросхемы. Не помешает параллельно керамическим блокировочным конденсаторам с номиналами 0.1 мкФ поставить электролитические конденсаторы с номиналом от 100 мкФ и выше.
    Если без стабилизатора блок питания даёт напряжение 7 — 9 вольт, то почему не попробовать работу тестера с ним, а затем сравнить показание прибора с автономным питанием (с кроной). На крайний случай можно домотать вторичную обмотку трансформатора.

    я же выше написал что прибор так и не завелся, пробовал напрямую и через стабилизатор давал от 9 до 12в, от кроны без проблем работает, и в чем прикол если цеплять через адаптер на места пайки входа тестера не приходит ничего, мультиметр кашу показывает, сначала думал контакт плохой через крокодилы цеплял после распаял из дохлой кроны контакты и подцеплял его, аналогично на входе напруга скачет, а на контактах соединения крон все 9в присутствует

    Надо в место распайки кроны на плате прибора припаять электролитический конденсатор большой ёмкости (от 470 мкФ и выше).

    Я запитал Mega328 переделанным зарядником — работает нормально. Может, потому что ЗУ приличное, с оптопарой, а не дешёвка типа «output 4.7-12VDC.
    В моём на «холодной» стороне стоит TL431, я изменил номинал резистора в цепи его управляющего электрода (подобрал подстроечным, потом заменил на постоянный ближайшего номинала), на выходе получилось 8,95В. Зарядник был 5В 500мА, стал 9В 280мА (мощность осталась та же — 2,5Вт). Для Меги этого — за глаза. Кстати, запитывал от регулируемого БП — при 7В начинает врать, при 5В показывает уже полную чушь. В большую сторону не пробовал:)

    Ссылка на основную публикацию
    Adblock
    detector